層別化 | QCの七つ道具

層別化

層別解析とは | QCの七つ道具

層別化とは、たくさんのデータを、その得られたデータの特徴によって、グループ分けすることをいいます。たとえば、いくつかの機械で加工した部品のある特性値のバラツキが大きい場そのバラツキの原因を調べるためにデータをその得られた特徴である、機械や作業者別にグループ分けすることをいいます。

そして層別を使用して原因の調査を行い分析、解析することを層別解析といいます。

英語:stratified analysis

スポンサーリンク

QC 層別 エクセル テンプレート

下記にエクセルで作成した層別表があります。

平均値および標準偏差だけを入力すれば全体とロットのバラツキ度合いが一目でわかる正規分布表(下図)を作成しました。

全体と層別

ご自由にダウンロードしてご使用ください。

正規分布 比較表

層別 と 分類 違い

分類とは、あらかじめ用意されたカテゴリーに従って試料を仕分ける方法および行為なので、層別とは似ているが同じ意味ではない。

*層別:
。データを年齢別などの同じ共通点を持つグループに分類すること。層別に分けることで、漠然としたデータの特徴がはっきりする。

層別 相関

ふたつのX,Y変数データーの相関を調査する場合、データーを初めに層別しないと相関がわかりません。これは相関だけでなくヒストグラム分析、グラフ解析をするときにも言えることです。

優れた統計分析、解析手段があって元のデーターが正しく層別されないと正しい解析、分析はできません。

ヒストグラムの層別

たとえば、2台の機械で図1の部品を加工しています。無作為に100個を抜き取り、外径を測定し、ヒストグラムを作成したところ、図1のようにバラツキが大きいことがわかりまし
た。

図1 全体 分布

図1 全体 分布

原因を調べるため、データの特徴である機械A、機械Bにデータをグループ分け(層別)し、ヒストグラムを作成したところ図2のような結果が得られ、バラツキの大きな原因が機械Bにあることがわかります。

図2 機械別

図2 機械別

層別化 サンプリング

このように、層別する前後のデータを比較することによって、データの性質を把握し、対策につなげていくことができます。
層別で大切なことは、データの特徴を捉えてグループ分けすることです。
製造工場などでよく行なわれる層別には、次の項目があります。
①時間別・・午前・午後、昼夜、曜日など

②作業者別・・個人、男女、年齢、経験年数、技能など

③材料別・・メーカー、購人先、ロット、購入時期など

④機械別・・機種、号機、型式など

⑤方法別・・作業方法、口ットなど

⑥条件別・・温度、湿度、作業速度、作業場所など

⑦検査測定別・・検査員、測定者、測定器、試験機、測定場所など

活用の仕方は|ヒストグラム 二山 層別

層別には、いろいろな活用の仕方がありますが、前述のようにデータのバラツキの原因を調査し、データのバラツキを小さくし、不適合品の発生を少なくするなど、不適合品の原因究明作業改善を行なうために活用することができます。

層別は、異なる層の間の分布の違いや、層の中での分布を調べて、ばらつきの原因を探るために役立ちます。特に、パレート図、ヒストグラム、散布図、管理図などと合わせて活用すると効果的です。ただデータをたくさん集めただけでは、真の原因を探し出して、その原因に対する適切な処置を決めることは難しいです。

問題を検討する場合、製造する機械によって特性に差がないか、原材料によって差がないか、人、設備によって差がないかなどを考え、データを分けてグラフ化するなどの処理をして、分けたものを比べることで、問題の原因などの手がかりが把握できます。

なお、層別に似たものに「分類」という用語があります。分類とは、「あらかじめ用意されたカテゴリーに従って試料を仕分ける方法及び行為。ですので、層別と混同して使用しないようにして下さい。

図3 では、全体のヒストグラムが二山形で上限規格(SU)を超えているものがあることから、作業者ごとに層別してヒストグラムを作成したものです。層別したところ、作業者 A は規格を満たしていますが、平均は下限規格(SL)の方に偏っていること、作業者 B は平均が上限規格の近くにあって、上限規格を超えているものがあることがわかります。

層別とは

図3

図 4 の全体の散布図は 2 台の機械で製造した結果を示したものです。全体の散布図では、添加量と生産量との間に相関があるか不明瞭ですが、機械毎に散布図を作成してみると、どちらの機械も添加量と生産量の間には正の相関があることが明確になります。

層別とは2

図4

関連記事:QC七つ道具

エクセル2013、2010 層別散布図の作り方

データーを層別しないと散布図を作成しても相関が見えない場合がよく発生します。

ここでがエクセル2013を使用して層別散布図を作成します。

データー収集

部品Zの気温と長さを測定した結果が下記の表になりました。

相関係数は0.31と相関なしの結果でした。

全体データー

全体データー

A号機&B号機別 層別欄 追加

そこで製造機械別(号機別)を層別をして再度、散布図を作成する事にし、はじめに表にA号機、B号機のデーターが入力できるように欄を追加しました。

A、B号機データー欄 追加

号機別 並び替え

次に号機別の並べ替えを行います。

はじめに並べ替え範囲(グレー色範囲)をマウスで選択。

次はデータータグ→並べ替えを選択します。

データー並び替え

次に下記のダイヤログが表示されるので下記のように設定します。

最優先されるキー:号機   並べ替えのキー:値 順序:昇順

最後にOKを選択して並べ替えを行います。

データー並び替え2

A号機&B号機データーの移動

並べ替えが終了したA号機データーをまとめて新規に作成した長さ(A号機)に移動します。

A号機データの移動

同様にB号機のデーターも移動します。

データーの選択

次にA号機及びB号機データーをグラフに反映することができるようします。

デザインタグ→データーの選択→凡例項目(系列)の追加を選択します。

データーの選択

系列の編集

系列の編集ダイアログが開きます。系列名に 1 つ目のグループの名称を=”A号機”
という形式で入力し、つづけてA号機の X(第 1 変数)の値の範囲、Y(第 2 変数)の値の範囲を指定していきます。
最後にOKボタンをクリックします。

A号機 系列の指定

同様にB号機についても同様な編集を行います。

エクセル 層別散布図の完成

最後に元データーを削除しその凡例”すべてのデーター”も併せて削除します。

凡例の削除は該当の凡例を選択後にDELキーで削除してください。

全てのデーター 凡例 削除

層別 統計学

層別 平均の関係

層別する前の全体の平均値と層別後の各ロット平均値には下記のような関係がある。

層別後のサンプル数: N1,N2,N3・・・・・Nk

各層別ロットの平均値: μ1,μ2,μ3・・・・μk

soubetu1

全平均=層別ロットの平均の平均

層別 外分散 | σb2

層別された各ロットの平均値を層別ロットのサンプル数をウエィトにした時,層別ロットの分散を外分散といい普通σb2で表わせられる。

層別後のサンプル数: N1,N2,N3・・・・・Nk
各層別ロットの平均値: μ1,μ2,μ3・・・・μk

外分散計算式

外分散計算式

外分散=層別ロットの平均の分散

層別 内分散 | σw2

層別されたロット内の分散をその層別ロットの大きさをウェイトにして全層別ロットに亘って加重平均したものを内分散といい普通σw2で表わせられる。

層別後のサンプル数: N1,N2,N3・・・・・Nk
各層別ロットの分散: σ1,σ2,σ3・・・・σk

内分散計算式

内分散計算式

内分散=層別ロットの分散の平均

層別 全分散、外分散、内分散の関係

層別される以前の集団を全集団といい、その分散を全分散といいます。

ひとつの集団をいくつかの層別ロットに分けると外分散σb2、内分散σw2が生じ全分散との関係は下記の式のようになる。

staratum4

上記の式は全分散が外分散と内分散に分けられることを示している。

層別 分散比

全集団の分類をなるべく類似なものが集まる意図を持って分類(層別)すると外分散σb2は大きく内分散σw2は小さくなる。
一方、何らかの意図もなくランダムに分類した場合は元の集団の大きさ(N)が分割数(K)に比べてはるかに大きければ外分散σb2は小さく内分散σw2は大きくなり全分散σ2と差があまり見られなくなる。

この性質を利用してすでにある意図をもって分類されたと思われる集団に対して外分散σb2、内分散σw2を計算して全分散σ2、内分散σw2を計算して全分散σ2との関係を見ればその分類効果を実証的に評価(外分散σb2が大きいほど分類効果あり)することができる。

また、いくつかの集団の類似性を見たいときはその集団の外分散σb2、内分散σw2、全分散σ2を見ることによって各集団の類似性を評価することができる(外分散σb2が小さいほど類似性がある)
これらの考え方は実務的に大変役に立つものである、分類効果をみるためのひとつの尺度としては下記式がある。

staratum5N:全体の大きさ

K:分割の数

 

 類似のものを集めて分割した場合

Fの値は1よりおおきくなり、分類効果があるほど大きくなる。

層別分析

層別分析

 ランダムにサンプルして分割した場合

Fの値は1に近い値となる

各分割ロットの平均値の差がないように分類した場合

Fの値は1より小さくくなり、分類効果がないと判断される。

層別分析

層別分析

参考文献:QSS-普通科テキスト 統計的手法   日本規格協会

動画 マネジメントソフト『層別分析』

おすすめソフト エクセル統計2015

搭載機能:基本統計、1標本の推定と検定、2標本の比較、集計表の作成と分析、分散分析・多重比較、ノンパラメトリック検定、生存分析・ハザード分析、時系列分析・曲線のあてはめ、多変量解析、管理図・ROC曲線、特殊なグラフ、ユーティリティなど。

関連コンテンツ